
Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

1

1

 

INFOGISTICS’   XTRACTOR  
[DRAFT VERSION] 

 
 

 
 
 

October 2000 
 
 

 
Tel: +44 (131) 650 4632    

Email   info@infogistics.com  
Web: http://www.infogistics.com/ 

 

 
TABLE OF CONTENTS 

 
I . XTractor  – general descr iption 

                                    I .1      Overview 
                                    I .2       XTractor  – core engine 

 . 
                                     
                                     I I .      XTractor  output  
                                     I I .1     XTractor  output – extraction mode 
                                     I I .2     XTractor  output – markup mode 
                                 

                               I I I .    XTractor  – standalone tool  
 

IV. XTractor  – server  mode 
IV.1    Running XTractor  in TextServer  
VI .2    TextServer  JavaBean 

 
                               V.     XTractor  resources – fine tuning the per formance 
 
                               VI.    XTractor   SDK 
                               VI .1    Calling XTractor  from your  code 

                                     VI .2   Obtaining the results of tokenization 
                               VI .3    Specification of Preferences 
                               VI .4    Complete API  Specification 

 
 
 
 
 
 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

2

2

I .  XTractor  – general descr iption 
 
I .1 Overview 
XTractor by Infogistics is a successor to the Named Entity Recognition system from the University of 
Edinburgh which won the prestigious MUC-7 competition organized by the American Defence Research 
Agency (DARPA) in 1998. 
 
XTractor is an Information Extraction engine which sifts through large volumes of texts and creates 
database records for the objects which are mentioned in the text, such as people, organizations, locations, 
vehicles, etc. Moreover, it normalizes and unifies information so, for example, if somebody is referred to as 
"John D. Smith", "John", "J. Smith", or even "he", XTractor can figure out that this is the same person. And 
most importantly, XTractor identifies the key relationships or links between the objects that it finds.  
 
For example, from a sentence "White is a managing director of Cyber Corp." XTractor will identify that 
there is a person with surname "White", there is a company called "Cyber Corp." and it will create an 
"employment" link between these two objects. It will also record particular details of the employment: 
"managing director".  
 
*PERSON id=1                                                                                            *ORGANIZATION id=2 
    surname:     White                                                                                           name:  Cyber Corp. 
    occupation:  managing director                 *XREF: employed _at #1 #2 
 
XTractor can be linked to our document viewer where the objects found by XTractor are highlighted, and 
information aggregated from many different places of a document can be seen at a glance. For instance, at 
the beginning of a document XTractor identifies that John Smith is 42 year old, later on it appends that he 
works at Good Co. Ltd. and at the end of this document it identifies that he drives a red Nissan. XTractor 
makes sure that all this information is kept under a single record "John Smith", suitable for further 
processing by the computer, or for displaying to humans.  
 
XTractor can be used as a standalone product or through its SDK it can be integrated  into third-party 
applications. It currently works with several different dialects of English (American, British, Canadian, 
Australian, Hong-Kong). Apart from its core engine, Xtractor also comes with a toolkit for building 
resources for  the extraction of customer-defined objects and relations.  
 
XTractor is available for all major platforms (WIN32, Linux, Solaris, SunOS..) and can be used as a 
standalone product or it can be integrated into your application as a dynamic library or COM/CORBA 
object. Compatible compilers: Microsoft Visual C++ 5.0 (and higher) on WIN32, gcc 2.5 and higher on 
Linux, Solaris and SunOS.  
 
I .2 XTractor  – core engine 
 
The core engine of XTractor supports identification of objects and their properties as follows: 
 
 

Object Properties 

PERSON   first name, middle name, last name, title, age, DOB, 
occupation, passport number, personal id, social 
security number 

LOCATION  housenum, housename, street, area, district, city, 
region, state, country, zipcode, geographical, full 
address; 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

3

3

ORGANIZATION  name, abbreviated name, alternative name 

PRODUCT  name, manufacturer 

TIME  seconds, minutes, hours, timezone 

 DATE  weekday, monthday, month, year, century, holiday 

CONTACT telephone, fax, email 

VEHICLE   make, model, year, registration 

MONEY amount, currency 

MEASURE 

(weight, distance, 
duration, percent, etc.)   

– type, amount, units 

RELATION relative (father_of, mother_of, brother_of…),  
homeaddress, businessaddress, born_at, 
empoyed_at, contact_on,  etc. 

 
                                                                                 
We have also successfully developed additional resources for identifying objects that are specific to the 
medical domain (drugs, medical conditions, chemical formulae..), property market (types of properties, 
specifications, areas…),  legal documents, and some other more specialised domains.  
 
 
 
 
I I  XTractor  output  
 
XTractor can deliver its output in two modes: extraction mode and markup mode.  
 
I I .1 XTractor  output – extraction mode 
 
 In the extraction mode XTractor processes text and outputs object records.  An object record encodes 
object type (e.g. person, location, etc.), properties of this object (e.g. surname for person, model for vehicle, 
etc.) and locations where it was extracted from in the text. Such records are marked using an XML markup 
with the structure as follows: 
 
<object-type  src=”xtractor”   cls=”obj”   id=object-id   val=NormalizedString > 
    <span  sl=start-line  sc=start-char  el=end-line  ec=end-char>Text</span> 
    …………………………………………………………………………. 
    <span  sl=start-line  sc=start-char  el=end-line  ec=end-char>Text</span> 
 
    <property-type  cls=”property”  val=NormalizedAttributeValue> 
        <span  sl=start-line  sc=start-char  el=end-line  ec=end-char>Text</span> 
         …………………………………………………………………………  
       <span  sl=start-line  sc=start-char  el=end-line  ec=end-char>Text</span> 
    </property-type> 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

4

4

   ……………………………………………………………… 
   <property-type  cls=”property”  val=NormalizedAttributeValue> 
        <span  sl=start-line  sc=start-char  el=end-line  ec=end-char>Text</span> 
         …………………………………………………………………………  
       <span  sl=start-line  sc=start-char  el=end-line  ec=end-char>Text</span> 
    </property-type> 
</object-type> 
 
An object record represents an object of a certain type e.g. person, organization, location, etc. This type is 
specified in the label (object-type) of an object record. An object record has two fixed attributes: attribute 
src=”xtractor” indicates that this record was produced by XTractor and attribute src=”obj” indicates that 
this is an extracted object. These attributes can be used to automate conversion of a set of object records 
into your own format (or to SQL statements) – you don’ t need to list all possible object-types since the 
information provided by these two attributes indicates unambiguously that this is an object record. The val 
attribute keeps a normalized string representation of this object but it can be empty if the normalized string 
is identical to the entire character body of the object. Each object record has a unique id which is specified 
in the id attribute. 
 
The information about the exact locations where from in the text this object was extracted is provided in the 
span elements which contain start line (sl), start character (sc), end line (el) and end character (ec) 
information together with the exact string in this span.  
 
The individual properties of an object are encoded in the property elements.  The actual list of properties is 
dependent on the type of the object.  The structure of a property element is similar to that of the object: a 
property element can have its normalized value and a list of span elements, which provide the information 
on where this property was extracted from. Like object elements, property elements specify their type 
(surname, model, etc.) in the label and have a fixed attribute cls, which in this case set to be property rather 
than obj. 
 
Here is an example of an object record. This record aggregates all mentionings of a person called Robert 
Johns in the text: 
 
<person src=”xtractor”  cls=”obj”  id=”1”  val=”Johns, Robert” > 
   <span sl=”2”   sc=”23”  el=”2”   ec=”36”>Robert Johns</span> 
   <span sl=”5”   sc=”3”    el=”5”   ec=”12”>R. Johns</span> 
   <span sl=”19” sc=”44”  el=”19” ec=”49”>Johns</span> 
 
   <firstname cls=”property” val=”Robert”>  
       <span sl=”2” sc=”23”  el=”2”  ec=”29”>Robert</span> 
       <span sl=”5” sc=”3”    el=”5”  ec=”8”>R.</span> 
    </firstname> 
 
   <surname cls=”property” val=”Johns”> 
      <span sl=”2”   sc=”31”  el=”2”   ec=”36”>Johns</span> 
      <span sl=”5”   sc=”7”    el=”5”   ec=”12”>Johns</span> 
      <span sl=”19” sc=”44”  el=”19” ec=”49”>Johns</span> 
   </surname> 
</person> 
 
First we see that this record is of type person.  For person objects the normalization standard currently is 
“Surname, Firstname” and the normalized string  “Johns, Robert”  is kept in the val attribute.  The span 
elements show that this person is mentioned three times in the text: first time as “Robert Johns” , then as “R. 
Johns”  and finally simply as  “Johns” . The exact locations of these occurrences are also provided.  For 
instance, “R. Johns”  is mentioned on the line 5 starting at the 3rd character and ending at the 12th character.  
 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

5

5

Under the main object the individual properties for this object are listed. There are two of them: firstname 
and surname.  Each of these properties specify its normalized value in the val attribute. For instance, the 
first name has two mentionings: “Robert”  and “R.”  but the normalized (main) one is Robert. The span 
elements under properties specify where from in the text they have been extracted. 
 
 I I .2 XTractor  output – markup mode 
 
In the markup mode XTractor tags the text with XML markers, which signal start and end of found objects 
and their properties. The XML encoding is similar to that employed by the extract mode but it does not use 
the span elements since the locations are annotated in the text directly. In this mode we also employ one 
extra attribute (idref) for object elements. This attribute specifies that marked at a certian location object 
has already been identified earlier in the text and the value of the idref attribute specifies the id of it. Thus 
one can assemble aggregated object records as produced in the extract mode.  For example, the sentence 
 
        Robert Johns is a gardener. 
 
will be marked up as 
 
      <person src=”xtractor” cls=”obj” id=”1” val=”Johns, Robert”> 
          <firstname cls=”property”>Robert</firstname>  
          <surname  cls=”property”>Johns</surname> 
      </person> 
       is a  
      <person src=xtractor cls=”obj” id=”2” idref=”1”> 
            <occupation cls=”property”>gardener</occupation> 
     </person>. 
 
In this text XTractor found two objects of type person: “Robert Johns”  and “gardener” . These objects are 
explicitly marked in the text. The fact that these two objects refer to a single person is represented by the 
idref attribute of the second object: this idref attribute is set to the id  (1) of the object it should be unified 
with. 
 
 
 
 
I I I . XTractor  – standalone tool 
 
The standalone version of XTractor  works both with plain ASCII texts and with texts marked up in XML.  
The standalone version can also be used in server mode, which communicates with a calling program via 
system sockets to operate as a service.  
 
To call XTractor in standalone mode, you need to specify a resource file, which contains pointers to 
necessary resources (grammars, lexicons, statistical models, etc.). A standard resource file is provided with 
the XTractor installation, but you can also develop your own resources for your own domain and then 
create your own customized resource file.  
 
Here is a typical call to XTractor which uses the standard resources to process text from the file 
“ file_to_process” , which is an ASCII file. We assume that your XTractor installation is in C:\XTRACTOR 
on  a Win32 platform: 
 
    >>xtract   c:\XTRACTOR\Resource\resource.spc  file_to_process  
 
The default output mode  of xtract is extract. To switch to the markup mode use –markup option: 
 
>>xtract   -markup c:\XTRACTOR\Resource\resource.spc file_to_process 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

6

6

When you run XTractor over files with XML markup you need to specify which elements of the XML 
structure represent documents and which sections of the document to process. This is done by passing two 
access queries: –qd (for documents) –qs (for sections) options:   
 
  >>xtract   -qd “ .* /DOC” –qs  “ .* /P”  c:\XTRACTOR\Resource\resource.spc  file_to_process.xml 
    
    –qd  “ .* /DOC”  -- all DOC elements should be treated as documents 
    -qs     “ .* /P”       -- text in P elements which are under DOC elements should be processed 
 
If you don’ t have paragraphs marked up in the documents you should you   –q “ .”   which means get text 
under parent element which in this case is DOC element. The  “ .* ”  prefix in the access queries means  
“anywhere under” .  So “ .* /DOC” accesses all DOC elements in the file and “ .* /P”  accesses all P elements 
under DOC elements. One can specify more detailed access queries: 
    “ .* /DOC[id=1]”  – process all DOCs with id attribute set to 1. 
   “ /CORPUS/DOC” – process DOC elements which are directly under root CORPUS element. 
For further information and query syntax see LTXML Query Language document.   
   
To switch to the markup mode use –markup option: 
 
>>xtract   -markup -qd “ .* /DOC” –qs  “ .* /P”  c:\XTRACTOR\Resource\resource.spc  file_to_process.xml 
 
 
Other command-line options: 
    -id NUM     -- start id counts for extracted objects with NUM ( default 0); 
    -id_speaker NUM – XTractor automatically creates speaker object and you might wish to assign this 
object a specific id rather than let XTractor to generate one. This is useful when you want to unify this 
processing with processing of a different document of the same Author. 
 
Here is an example how you can make the XTractor to build objects with ids starting form 10: 
 
>>xtract   -markup  -id 10 c:\XTRACTOR\Resource\resource.spc  file_to_process 
 
 
IV. XTractor  – server  mode 
 
In addition to the stand-alone tools and SDK API, XTractor can also be delivered as a service within 
Infogistics’ TextServer. As a module of Infogistics’ TextServer, XTractor can easily be integrated in a 
distributed environment, and is particularly suited to being used with Enterprise Java Beans and COM 
objects. Since all data communication between TextServer and the Java application is in XML, Infogistics’ 
XML Java wrappers can be used to access the linguistic structure that iToken adds to the document. 
 
TextServer is architected as a TCP/IP-based service which communicates with an application via an 
efficient protocol. It is packaged with EJB (J2EE) session beans which interface with it, making this the 
ideal solution for integrating all of Infogistics’ text analysis products into your Java application. It also 
comes with a COM interface which again integrates Infogistics’ technology into this popular Microsoft 
platform. 
 
We now describe the iToken functionality of the Java interface to TextServer. 
 
IV.1 Running XTractor  in TextServer  
 
Starting TextServer involves simply starting a daemon process. Doing this is very straightforward: 
 
 >> IGTextServer  -port PORT_NUMBER  <resource-file>  
 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

7

7

For example, 
 
>> IGTextServer  -port  2222  c:\INFOGISTICS\resource.spc  
 
 
where  resource-file is an initialisation file that tells TextServer where to locate the resources that it needs, 
and PORT_NUMBER is the port on which the service is run.  Infogistics’  TextServer allows one to 
communicate with a number of text processing tools such iToken (the tokenizer), tTag (Infogistics’  POS 
tagger), tChunk (Infogistics’  noun group chunker) and Xtract (Infogistics’  Information Extraction tool). 
Resources for all these tools can be specified in their own resource files and the resource file which is 
passed to the TextServer contains references to these individual resources. 
 
Once running, one can establish a connection to the TextServer  and access its different functions through 
IGTextClient calling program which always takes host name and port number as its options. To obtain 
diagnostics information, for instance, IGTextClient should be called with the option –diagnose: 
   
>> IGTextClient –host <HOST_NAME> -port PORT_NUM -diagnose 
 
This calling program provides interface similar to stand alone individual tools which are encompassed by 
the TextServer. To call such a tool one need to specify tool name, arguments for its operation, and data to 
work on. Here is an example of calling XTractor to tokenize an XML file: 
 
>> IGTextClient –host localhost -port  2222 –tool xtract –args ‘ -qd “ .* /DOC” –qs “ .” ’  file_to_process.xml 
 
this call will output extracted objects marked up in XML (extract mode is default) for the processed file. 
 
The main reason to run the TextServer, however, is that clients can exist on multiple deployment platforms 
which communicate with it, thus bringing its functionality to a wide variety of applications. 
 
 
VI.1 TextServer  JavaBean 
 
Once TextServer is running, it is easy to interface with it using Java. TextServer comes bundled with some 
Enterprise Java Beans which allow a J2EE application to offer String-based, file-based and 
XML-based linguistic processing capabilities. 
 
TextServer's Java interface consists of the following Session and Entity beans for iToken functionality. 
 
 
• [TServer]: This bean encapsulates information about the TextServer, generates new TSession beans, 

and provides information about the status of the TextServer. 
• [Tsession]: This session bean opens a communication session with the TextServer, and implements all 

of the interface functionality that iToken provides. Using this bean, it is possible to use iToken 
both in plain text and in XML mode, as well as to use other TextServer functionality you have opted to 
include. 

• [TDocument]: This session bean represents an individual tokenized document. It gives a high-level 
interface to the tokenized representation of the document as processed by the TextServer. 
  

The interfaces which these beans support essentially replicate the functionality of the SDK C interface 
described at the end of this document, and therefore is not included here. It facilitates the processing of 
documents and text in all of the formats supported by iToken.  
 
  
 
 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

8

8

 
V. XTractor  resources – fine tuning the per formance  
 
For its operation XTractor comes with prebuilt resources such as grammars, lexicons, statistical models, 
etc. These resources are specified in the resource file resource.spc which is in the main XTractor directory. 
The standard resource file has structure as follows: 
  
grammar-file            c:\XTRACTOR \resource\coregram.cgr             #-- grammar file for core engine 
standard-lex-file       c:\XTRACTOR \resource\corelex.cmp               #-- lexicon file for core engine 
user-lex-file              c:\XTRACTOR \resource\user.lex                      #-- file in which you can add your  
                                                                                                              #-- own entries to the lexicon 
system-lex-file         c:\XTRACTOR \resource\syslex.cmp                 #-- support lexicon  
preference-file          c:\XTRACTOR \resource\preference.lst             #--  session control preferences 
 
You can fine-tune XTractor to a specific task by manipulating user.lex and preference.lst files. You can put 
strings with their types that you want XTractor to recognize into user.lex. You can add to the following 
categories: 
 
firstname, surname,  
street, town, state, geographical 
organization-name 
vehicle-make, vehicle-model 
 
for example, 
 
svetobor :: firstname 
zhuguli   :: vehicle-make 
moscow  :: town 
 
Strings you add to the lexicon are case insensitive, but if you want it to be case sensitive you need to 
specify *C flag: 
 
White :: lastname *C 
 
 
The preference.lst file specifies a list of flags, which can switch on or off geographical localization.   
The following table shows which countries currently have localisation instructions in place for them. In most 
cases, localisation is also possible at the state (province, etc.) level. It’s important to remember, when localizing for 
a particular state or province (e.g. Ontario), to also localize for the country itself (i.e. Canada). 

Country State-
level? 

Format 

US Y USXX, where XX is 2 letter state code, e.g. USFL 

UK Y name of county, e.g. Lothian 

Canada Y CAXX, where XX is 2 letter province code, e.g. CAON 

Australia Y AUSXX(X), where XX(X) is 2 (or 3) letter state code, e.g. 
AUSNSW 

Mexico N  



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

9

9

 

The localization flags are activated by the “activate” command, e.g. to activate localization for Florida 
you do 

������� ������	�
����� ������������� ������	���� ����� ����� ��������� ����� ��� ��� � � !  

to comment a line in the preference file use #. 

 
 
VI . XTractor   SDK 
  
XTractor is available for the integration with your own applications as a dynamic library written in C: 
xtractor_win32.dll (Win32), xtractor_lnx.so (Linux) and xtractor_sol.so (Solaris). Compatible compilers: 
Microsoft Visual C++ 5.0 on WIN32 and higher, gcc 2.5 and higher on Linux, Solaris and SunOS. 
 
To run your application linked with the XTractor dynamic library on Win32 you need to place 
xtractor_win32.dll to a directory specified in your PATH. To run your application linked with the XTractor 
dynamic library on Linux or Solaris platform you need to add the directory where this library is contained 
to your LD_LIBRARY_PATH. 
 
To link your application to XTractor dynamic library you need to include xtractor_win32.lib, 
xtractor_lnx.so or xtractor_sol.so  (depending on the platform) to the list of libraries you are linking with.  
 
VI.1 Calling XTractor  from your  code 
 
To be able to apply XTractor from your code you usually make the following sequence of API calls: 
 
 
#include “xtractor.h”   //-- specifies XTractor API calls 
………………… 
const char*  specs =”c:\XTRACTOR\resource.spc” ;   //--   resource specification  file 
const char*  prefs =NULL;     //-- preferences specification (will be describe later) 
const char*  args=NULL;     //--   session arguments (akin command line arguments) (will be describe later) 
 
XIN xin = xtractor_Init(specs, prefs, args);       //---  (1)  initalize and obtain  handle xin for  the session 
const char*  text; 
while(text= GET NEXT DOCUMENT TO PROCESS)          
{  
       int status = xtractor_Adapt2Text(xin,  text);        //--  (2) do tuning of XTractor to this document 
       if(status!=xtractor_OK)                                            //-- (3) check that processing was OK 
             {  fprintf(stderr, “%s” , xtractor_Error(status); continue;}  //-- (4) if not report error 
       status = xtractor_ProcessText(xin, text, prefs, args);            //-- (5) do processing 
       if(status!=itoken_OK)                                                //-- (6) check that processing was OK 
             {  fprintf(stderr, “%s” , xtractor_Error(status); continue;}  //-- (7) if not report error 
       char*  xml_result = xtractor_GetXMLmarkup(xin);     //-- (8) get XML tokenized text 
       DO SOMETHING USEFUL WITH xml_result AND FREE IT 
  
       xtractor_ResetAdaptation(xin);    //--  (9) clean adaptation to be able to adapt to a new document 
}  
xtractor_Close(xin);  //-- (10) close XTractor session 
 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

10

10

First of all you need to include xtractor.h file which specifies all XTractor API calls. Then you need to 
initalize an XTractor session by calling xtractor_Init() API call. This call returns a handle for the session, 
which you  will require for all other calls to XTractor functions. You can open multiple sessions at the 
same time. The xtractor_Init() function takes three strings as arguments: specs specifies the location of the 
resource,  prefs specifies preferences for this session (use US time format, apply geographical lists specific 
to Florida, etc.), and args  specifies the output mode, start id number, etc. Both prefs and args  can be 
NULL in which case the default settings will take place. The exact content of  prefs and args will be 
described later in greater detail. 
 
After you have initialized a session you can send a document for processing. In the “while”  loop we read 
one document after another into the “ text”  variable. Then we adapt XTractor to this text by calling  
xtractor_Adapt2Text(). We call this function with our current XTractor session handle xin and send it our 
current text. During this call XTractor applies some on-line dynamic learning algorithms which allow it to 
produce more accurate results during processing. This step however is not obligatory and if processing time 
is crucial you might opt for commenting it out.  This call return status (error code) of its operation, which 
can be printed out by calling itoken_Error(status). 
 
 Now we are ready to perform actual processing of the text by calling xtractor_ProcessText(). We call this 
function with our current XTractor session handle (xin) and send it the text to process. We also might 
specify prefs and args settings if we wish to change some parameters from the ones set at the xtractor_Init() 
call, otherwise we may simply set prefs and args to NULL.  This call return status (error code) of its 
operation, which can be printed out by calling itoken_Error(status). 
 
There are several ways you can access the results of tokenization. Here we demonstrated 
xtract_GetXMLmarkup(xin) call which returns the entire text with XML marked up objects  and their 
properties (see markup mode) into a string which it allocates. More detailed description for accessing 
results of the processing is given in section VI.3. 
 
After you have processed or saved the extraction results, you can start working on the next document. But 
before you can do that, you should reset the adaptation resources produced by xtractor_Adapt2Text() if you 
want Xtractor to adapt itself to the next document (by calling xtractor_Adapt2Text()). This can be achieved 
by calling the xtractor_ResetAdaptation(xin) API function with current session handle xin, which resets 
Xtractor’s internal state to its pre-adapted state.  
 
To finish an XTractor session call xtractor_Close(xin). 
 
 
VI.2 Obtaining the results of tokenization 
 
There are several ways you can access the results of tokenization. Above we demonstrated 
xtract_GetXMLmarkup(xin) call which returns the entire text with XML marked up objects  and their 
properties (see markup mode) into a string which it allocates. There is also a call 
xtract_GetXMLextract(xin) which in  a similar way allocates a returned string and puts there the 
extracted objects with their properties in XML format (see extract mode). 
 
There is also a way of accessing  extracted objects and their  properties in a sequential fashion. The 
structure of objects and properties is described in section “Xtractor output – extraction mode” : each object 
has a type, a normalized value and a set of span elements which record positions in the text this object was 
extracted from. An object also contains a set of properties which have a similar structure.  
 
In the sequential access  mode we first need to obtain a handler for an object and then we can retrieve its 
individual properties and span information. To obtain a handle to an object we can call 
xtractor_GetNextObjectHandler().  After we have obtained a handler for an object we can retrieve its 
type by calling xtractor_GetType() and its normalized value by calling xtractor_GetVal(). 
 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

11

11

We can then iterate through the span elements of the object by calling xtractor_GetNextSpanHandler  () 
and then obtain values of starting and ending positions and textual contents for each individual span. In a 
similar fashion we can iterate through individual properties of the object and then retrieve type and 
normalized value for a property as well as iterate through span elements of  a property. Here is a sample 
code which does this: 
 
 
    int object_handler=-1;   //-- set handler so its next element will be the starting one 
    while((object_handler=xtractor_GetNextObjectHandler(xin, object_handler)!=-1) 
    { 
         const char* obj_type = xtractor_GetType(xin, object_handler); //-- get object type e.g. PERSON 
         const char* obj_val   = xtractor_GetVal(xin, object_handler);   //-- get norm. value: e.g. Johns, Robert 
 
         int obj_span_handler=-1;   //-- set handler so its next element will be the starting one 
         while((obj_span_handler=xtractor_GetNextSpanHandler(xin, object_handler, obj_span_handler)!=-1) 
         { 
              const char* span_txt = xtractor_GetSpanText(xin, obj_span_handler);   
              int start_line = xtractor_GetSpanStartLine(xin, obj_span_handler); 
              int start_pos = xtractor_GetSpanStartPos(xin, obj_span_handler); 
              int end_line = xtractor_GetSpanEndLine(xin, obj_span_handler); 
              int end_pos = xtractor_GetSpanEndPos(xin, obj_span_handler); 
         } //-- end of obj_span_handler 
 
         int prop_handler=-1;     //-- set handler so its next element will be the starting one 
         while((prop_handler=xtrcator_GetNextPropertyHandler(xin, object_handler, prop_handler)!=-1) 
         { 
            const char* prop_type = xtractor_GetType(xin, prop_handler); //-- get property type e.g. LASTNAME 
            const char* prop_val   = xtractor_GetVal(xin, prop_handler);  //-- get property norm. value e.g. Robert 
 
             int prop_span_handler=-1;    //-- set handler so its next element will be the starting one 
             while((prop_span_handler=xtracor_GetNextSpanHandler(xin, prop_handler, prop_span_handler)!=-1) 
             { 
                  const char* span_txt = xtractor_GetSpanText(xin, prop_span_handler); 
                  int start_line = xtractor_GetSpanStartLine(xin, prop_span_handler); 
                  int start_pos = xtractor_GetSpanStartPos(xin, prop_span_handler); 
                  int end_line = xtractor_GetSpanEndLine(xin, prop_span_handler); 
                  int end_pos = xtractor_GetSpanEndPos(xin, prop_span_handler);  
            } //-- end of prop_span_handler loop 
        } //-- end of prop_handler loop 
    } //-- end of object_handler loop 
 
Note that calls to xtractor_GetNextSpanHandler() take as their second argument a handler to an object or 
a property where this span belongs to. Calls to xtrcator_GetNextPropertyHandler() take as their second 
argument a handler to an object a property belongs to.  Calls which retrieve information for types and 
normalized values of individual objects and their properties xtractor_GetType() and xtractor_GetVal()  as 
well as xtractor_GetSpanText() which  retrieves textula content of an individual span element return only 
pointers to the strings. These strings will be destroyed with the next call to xtractor_Adapt2Text() or 
xtractor_ProcessText(). 
 
 
VI.3 Specification of Preferences 
 
As was explained in Section “XTractor resources – fine tuning the performance”  there are two files, 
user.lex and preference.lst, which can be modified by the user to fine-tune the performance of XTractor. 
The same information can be passed to XTractor during session initialization through the xtractor_Init() 
API call in its second argument (prefs). You may specify lexical entries and flags exactly as you would 
specify them in the corresponding files e.g.: 
 
"�#�$�% &�"�$�'�()�*�+ ,�-�-�"�#�$�% &�"�$�'�*�. /�0�% 1�"�. /�#�"�$�% /�2�3 "�2 1�. % 2 4



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

12

12

5�6�7�8�9�: 9�;=<�<?>A@ ;B5�8�C D�EF7 G�H�H�D�I�IJC 7LKM>A@ ;B5�8�C D�EF7

NPO Q R�Q S @T<�<�6�7 O @ U S 7LH�EFD�VL7WG�H�H�D�I�I�X Q 5�5�@ D�CJU�DL;YEFD�VL7L;Z8�9[8 O 7 S @ 5�8�9�>�6�7 O @ U S 7�EFDLVL7L5

\ O @ 8P7]<^< S D 5_8PC`D Ea7cb?d G=H^H[D I`I \ O @ 8�7cD 5feZ9g8�7 Ch8�@ D S 5 Q ;iC`D Ea7c: Q 8j9 C S k @ >l@ 8j5_8�D ;m8�5nKo@ 8 O DcUhD e`@ 8�D S`S 7�8�8P7�;

p O 7F@ C`>q9 ;�ErDP8�@ 9 Cs5ge`7�Uh@ >q@ 7 If8 O ;�9 Q`R`O 8 O 7c5g7 Ug9ZC`IrD ; R`Q Ea7�C�8t9Z> xtractor_Init() API call takes precedence over 
information which comes from user.lex and preference.lst files. 
 
You can also specify session arguments which override the default values. The default output mode for 
XTractor is “extract” . To change it to the “markup”  mode you may use the “–markup”  option on the 
command line when working with the standalone tool, and similarly can use the “–markup”  option in the 
args string as well. You can also specify the starting id as “–id NUM”. Indeed, you can similarly specify 
any command line option in the args string.  At the moment these are: 
        -markup –id NUM –id_speaker NUM 
 
You can dynamically update both the prefs and the args values simply by passing them to the 
xtractor_ProcessText() API call. If you do not wish to update these values you may pass NULL instead, 
which will cause XTractor to use the values for these parameters which were passed to xtractor_Init.
 
VI.4 Complete API  Specification 
 
XIN  xtractor_Init(const char* specs,  const char* prefs, const char* args); 
Initializes a session with Xtractor engine. 
const char* specs  - full path name for Xtractor resource file; 
const char* prefs   -  preferences to override default (see “Specification of Preferences”);  can be NULL 
const char* args    -  arguments   to override default (see “Specification of Preferences”);  can be NULL 
 
returns XIN    - XTractor session identification number 
 
 
int xtractor_Adapt2Text(XIN xin,  const char* text); 
performs on-line learning from text. 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
const char* text  -  text to perform adaptation to; 
 
returns error code or  xtractor_OK if no error 
 
 
 
int  xtractor_ProcessText(XIN xin, const char* text, const char* prefs, const char* args); 
performs extractiron on text 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
const char* text  -  text to process; 
const char* prefs   -  preferences to override default (see “Specification of Preferences”);  can be NULL 
const char* args    -  arguments   to override default (see “Specification of Preferences”);  can be NULL 
 
returns error code or  xtractor_OK if no error 
 
returns: string with results of extraction. This is either a set of extracted objects (extract mode) or the 
original text marked up with XML tags (markup mode). This string is allocated. 
 
 
void xtractor_ResetAdaptation(XIN xin); 
drops adaptation results and prepares Xtractor to be adopted to new text 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

13

13

XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
 
 
void xtractor_Close(xin); 
ends an Xtractor session and frees aloocated resources 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
 
 
char* xtract_GetXMLmarkup(XIN xin); 
retrieves the entire text marked with XML tags (see “markup mode”  for exact format); 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
 
returns string in which the XML marked up text is placed. This string is allocated so you will eventually 
need to free it.   
 
char*  xtract_GetXMLextract(XIN xin); 
retrieves  extracted objects  marked with XML tags (see “extract mode”  for exact format); 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
 
returns string in which the XML marked up text is placed. This string is allocated so you will eventually 
need to free it.   
 
 
int  xtractor_GetNextObjectHandler(XIN xin, int prev_object_handler); 
retrieves  handler to an extracted objetc 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
int prev_object_handler – handler to the previous object (to get the first object it must be set to –1) 
 
returns handler to an object which then can be used to access this object properties or span elements. This 
handler can be then passed to the next call of itoken_GetNextObjectHandler() as the second argument. If no 
object can be obtained for the handler this call returns –1. 
 
 
int  xtrcator_GetNextPropertyHandler(XIN xin, int object_handler, int prev_prop_handler); 
retrieves   handler to a property of an object 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
int object_handler – handler to the object this property should belong to 
int prev_prop_handler – handler to the previous property (to get the first object it must be set to –1) 
 
returns handler to a property which then can be used to access attributes of this  properties or span 
elements. This handler can be then passed to the next call of itoken_GetNextPropertyHandler() as the third 
argument. If no property can be obtained for the handler this call returns –1. 
 
 
const char*  xtractor_GetType(XIN xin, int  handler); 
retrieves  type of an object or  a property  
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
 int handler            - handler to an object or a property 
 
returns a pointer to a string which contains type name. . It is not allocated and will be lost with the next call 
to xtractor_Adapt2Text() or xtractor_ProcessText(). If no object or property can be obtained for the handler 
this call returns NULL; 
 
 
 
 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

14

14

const char*  xtractor_GetVal(XIN xin, int  handler); 
retrieves  normalized value for an object or  a property 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
int handler            - handler to an object or a property 
 
returns a pointer to a string which contains normalized value. It is not allocated and will be lost with the 
next call to xtractor_Adapt2Text() or xtractor_ProcessText(). If no object or property can be obtained for 
the handler this call returns NULL; 
 
 
int  xtractor_GetNextSpanHandler(XIN xin, int parent_handler, int prev_span_handler); 
retrieves   handler to a span element of a object or a property 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
int parent_handler – handler to the object or a property  this span should belong to 
int prev_span_handler – handler to the previous span (to get the first object it must be set to –1) 
 
returns handler to a span which then can be used to access attributes of this  span. This handler can be then 
passed to the next call of itoken_GetNextSpanHandler() as the third argument. If no span can be obtained 
for the handler this call returns –1. 
 
 
const char*  xtractor_GetSpanText(XIN xin, int  span_handler);   
retrieves   textual value of the span 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
int span handler     - handler to the span 
 
returns a pointer to a string which contains  textual value of the span. It is not allocated and will be lost with 
the next call to xtractor_Adapt2Text() or xtractor_ProcessText(). If no  span element can be obtained for 
the handler this call returns NULL; 
 
 
 
int  xtractor_GetSpanStartLine(XIN xin, int  span_handler); 
retrieves  line number the span starts with 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
int span handler     - handler to the span 
 
returns line number the span starts with. If no  span element can be obtained for the handler this call returns 
-1; 
 
 
int  xtractor_GetSpanStartPos(XIN xin, int  span_handler); 
retrieves  position  number in the line where the span starts 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
int span handler     - handler to the span 
 
returns position  number in the line where the span starts. If no  span element can be obtained for the 
handler this call returns -1; 
 
 
int  xtractor_GetSpanEndLine(XIN xin,  int span_handler); 
retrieves  line number the span ends at  
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
int span handler     - handler to the span 
 
returns line number the span ends at. If no  span element can be obtained for the handler this call returns -1; 



Infogistics’  Xtractor – Information Extraction Engine 
 

Copyright 2000 Infogistics Ltd. 

15

15

 
 
int  xtractor_GetSpanEndPos(XIN xin, int  span_handler); 
retrieves  position  number in the line where the span ends 
XIN xin               -  XTractor session identification number (obtained by xtractor_Init() call); 
int span handler     - handler to the span 
 
returns position  number in the line where the span ends. If no  span element can be obtained for the 
handler this call returns -1; 


